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An Explicit Rate-Optimal Streaming Code for
Channels With Burst and Arbitrary Erasures
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Abstract— This paper considers the transmission of an infinite
sequence of messages (a streaming source) over a packet erasure
channel, where every source message must be recovered perfectly
at the destination subject to a fixed decoding delay. While the
capacity of a channel that introduces only bursts of erasures
has been known for more than fifteen years, only recently,
the capacity of a channel with either one burst of erasures or
multiple arbitrary erasures in any fixed-sized sliding window has
been established. However, explicit codes shown to achieve this
capacity for any admissible set of parameters require a large
field size that scales exponentially with the delay. Recently, it
has been shown that there exist codes that achieve the capacity
with field size which scales quadratically with the delay. However,
explicit constructions were shown only to specific combinations
of parameters. This work describes an explicit rate-optimal
construction for all admissible channel and delay parameters
over a field size that scales quadratically with the delay.

Index Terms— Streaming codes, delays, forward error
correction.

I. INTRODUCTION

REAL-TIME interactive video streaming became part of
the day-to-day life of many people in the world. Unlike

traditional traffic, which is not extremely sensitive to latency,
real-time interactive video streaming is very sensitive to
latency. According to [1], while all IP video traffic will account
for 82 percent of the overall traffic by 2022, the portion
of real-time interactive video streaming is expected to grow
dramatically in the upcoming years.

One of the fundamental requirements of a communication
system is to handle interruptions that occur during the trans-
mission of information. Such interruptions occur either due to
the physical nature of the channel (for example, fading) or due
to packet drops in an interim point of the link (for example,
due to congestion or overload). In general, there are two main
error control schemes in use: Automatic repeat request (ARQ)
and forward error correction (FEC).

When ARQ is used, the receiver acknowledges every
received packet (or group of packets). If the transmitter
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does not receive an acknowledgment (after some predefined
timeout), it sends this packet again. An inherent benefit of
ARQ (compared to using FEC) is that the packets can be
composed only of payload (no additional parity symbols are
added). However, when considering low latency applications,
it may not be an acceptable solution as its latency is at least
three times the one-way delay of the link.

An alternative method for handling errors in the transmis-
sion is FEC. By “sacrificing” some throughput in advance,
FEC has the potential to lower the recovery latency as it
does not require signaling back to the transmitter. Tradi-
tionally, FEC is designed to maximize the error-correcting
capabilities while ignoring the impact it may have on the
latency. Two commonly used codes are Low-density parity-
check (LDPC) [2], [3] and digital fountain codes [4], [5]. The
typical block length of these codes is very long (usually a
few hundreds of symbols), resulting in high latency, which
means they are not suitable for real-time interactive video
streaming.

Martinian and Sunderberg first presented the challenge of
finding optimal low-latency codes in [6]. In their work, a new
class of encoders was shown to have the shortest possible
decoding delay required to correct all bursts of a given size
with fixed redundancy. In [7], a rate-optimal streaming code
with a field size that is linear in the delay parameter was
introduced for the burst-only case. The construction suggested
used diagonally interleaving of judicially chosen block-codes.
Leong et al. later showed in [8] that diagonally interleaved
codes derived from specific systematic block codes are asymp-
totically optimal. Adler and Cassuto derived bounds on the
average delay of reconstruction in [9], and (different) codes
which achieve it were suggested..

While assuming errors will happen in bursts is a realistic
assumption for several real-life sources of errors (for example,
an overflow of a buffer in any interim point of the trans-
mission), it turns out that the error-correction capability of
the burst-optimal codes deteriorates significantly even when a
smaller amount of arbitrary erasures is introduced. Therefore,
it is desirable that the code could handle both bursts and
arbitrary erasures efficiently.

Motivated by this goal, Badr et al., [10] studied codes for
a class of channels that introduce both burst and isolated
erasures. They further presented the sliding-window burst
erasure model and developed an upper bound for a case in
which there are either a burst of B erasures or a maxi-
mum of N arbitrary erasures in any window of length W .
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However, an achievable scheme that achieves the upper bound
was presented only for R = 1/2. Later, [11] extended
the analysis over the sliding-window model to variable-size
arrivals (where both the message-size and the packet-size
can vary).

Recently, two achievable schemes which achieve the upper
bound defined in [10] (and thus show it is the capacity of this
channel) were presented independently by Fong et al. [12]
and Krishnan and Kumar [13] for any rate. The proof in
[12] is existential (proving the existence of an appropriate
generator matrix), while the field size requirements are large
(O

(
T
N

)
). Recently, Dudzicz et al. [14] showed an explicit (and

systematic) construction for all rates greater than or equal 1/2,
albeit the required field size is larger than the non-explicit
constructions of [12].

In [13], an explicit construction based on linearized poly-
nomials is presented. However, except for a small range of
parameters, the field-size requirements are still large (scale
exponentially with T ). The field size was further addressed
in [15], in which a new rate-optimal code construction which
covers all channel and delay parameters. The field size of
this construction was showed to grow quadratically with the
maximal delay constraint (O(T 2)). However, explicit construc-
tions were presented only for specific cases. Reference [16]
provided explicit constructions with field size which scales
linearly with the maximal delay constraint only when T = N+
1 (mod B). In this paper, we present an explicit construction
that requires a field size which scales quadratically with the
maximal delay constraint for any delay T , burst size B, or N
arbitrary erasures such the T ≥ B ≥ N .

The rest of this paper is organized as follows. Section I-B
provides basic definitions of streaming codes. Section I-C
outlines the channel model used in this paper. Section I-D
provides basic definitions and properties of block codes that
will be used to show that the suggested construction achieves
capacity. Section II describes the process of designing the
generator matrix of a block code that we later show is used
to achieve the streaming capacity, with a field size that scales
quadratically with the latency constraint. This construction is
based on MDS codes; therefore, some of their properties are
recalled in Section II-A. Section II-C provides an example for
capacity-achieving streaming code for a channel with B = 4,
N = 3 and a maximal decoding delay of T = 6. Section III
provides proof that the block code built using the procedure
described in Section II can recover from any burst of B
erasures or N arbitrary erasures with maximal decoding delay
of T . Finally, we note that [15] designed capacity-achieving
streaming codes by specifying the parity-check matrix of these
codes rather than describing its generator matrix. In section IV,
we show that the parity-check matrix of the systematic version
of the construction described in Section II meets the set of
requirements defined in [15] for a parity-check matrix of a
capacity-achieving streaming code.

A. Notation

The set of non-negative integers is denoted by Z+ ∪ {0}.
The set of k-dimensional row vectors over F is denoted by F

k,

and the set of k×n matrices over F is denoted by F
k×N . For

any matrix G, we let Gt and rank(G) denote respectively the
transpose and the rank of G.

We denote by GA,B the sub-matrix generated from G by
taking rows with indices in A and columns with indices in B.
We denote by Gr1:r2,c1:c2 the (r2 − r1 +1× c2 − c1 +1) sub-
matrix generated from taking rows r1 up to r2 and columns
c1 up to c2 from G where r1 ≥ 1 and c1 ≥ 1, i.e., we denote
the index of the first row and column as “1”. We denote by
G:,c1:c2 the sub-matrix generated from taking columns c1 up
to c2 from G, and with Gr1:r2,: the sub-matrix formed from
taking rows r1 up to r2 from G. Further, denoting G−1

r1:r2,c1:c2

means that we take the sub-matrix defined above from G−1.

B. Streaming Codes

A source node wants to send a sequence of messages
{si}∞i=0 to a destination node through an erasure channel.
Each si is an element in F

k where F is some finite field.
Let yi be the packet received by the destination at time i for
each i ∈ {0, 1, . . . , i + T } where yi equals either xi or the
erasure symbol “∗′′. Every source message has to be recovered
perfectly at the destination within a delay constraint of T time
slots.

Definition 1 ([17], Sec. II-B): An (n, k, T )F-streaming code
consists of the following:

1) A sequence of source messages {si}∞i=0 where si ∈ F
k.

2) An encoding function fi : F
k × . . . × F

k︸ ︷︷ ︸
i+1 times

→ F
n for each

i ∈ Z+ ∪ {0}, where fi is used by the source at time i
to encode si according to

xi = fi (s0, s1, . . . , si) .

3) A decoding function φi+T :
F

n ∪ {∗} × . . . × F
n ∪ {∗}︸ ︷︷ ︸

i+T+1 times

→ F
n for each i ∈ Z+∪{0}

is used by the destination at time i + T to estimate si
according to

ŝi = φi+T (y0,y1, . . . ,yi+T ) . (1)

Definition 2: An (n, k, m, T )F-convolutional code is an
(n, k, T )F-streaming code constructed as follows:

1) Let Gconv
0 ,Gconv

1 , . . . ,Gconv
m be m+1 generator matri-

ces in F
k×n.

2) Then, for each i ∈ Z+ ∪ {0}

xi =
m∑

l=0

si−lGconv
l (2)

where s−1 = s−2 = . . . = s−m = 01×k by convention.

C. Channel Model

The channel model considered in this work is the sliding-
window burst erasure channel that was introduced by
Badr et al. [10]. This model introduces up to B consecu-
tive erasures, or N arbitrarily positioned isolated erasures in
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any window of size W among the sequence of transmitted
packets x[t].

Definition 3: An erasure sequence is a binary sequence
denoted by e∞ � {ei}∞i=0 where ei = 1{erasure occurs
at time i}.

Definition 4: The mapping gn : F
n ×{0, 1} → F

n ∪{∗} of
an erasure channel is defined as

gn(x, e) =

{
x if e = 0,

∗ if e = 1.
(3)

Definition 5: A (W, B, N)-erasure sequence is an erasure
sequence e∞ that satisfies the following: For each i ∈ Z+∪{0}
and any window

Wi � {i, i + 1, . . . , i + W − 1} , (4)

either N <
∑

l∈Wi
el ≤ B holds with all the 1’s in

(ei, ei+1, . . . , ei+W−1) are located at consecutive positions or∑
l∈Wi

el ≤ N hold with no restrictions on the locations
of 1’s.

In other words, a (W, B, N)-erasure sequence introduces
either one burst erasure with length no longer than B or
multiple arbitrary erasures with a total count no larger than
N in any window Wi, ∀i ∈ Z+ ∪ {0}. The set of (W, B, N)-
erasure sequences is denoted by Ω∞(W, B, N).

We further assume that W ≥ T + 1.1 Thus, we can assume
without loss of generality that

W > T ≥ B ≥ N ≥ 1. (5)

For further details, refer to Section I-B of [12].
The next definition defines a streaming code which is

(W, B, N)-achievable.
Definition 6: An (n, k, T )F -streaming code is said to

be (W, B, N)-achievable if the following holds for any
(W, B, N)-erasure sequence e∞ ∈ Ω∞(W, B, N): For all
i ∈ Z+ ∪ {0} and all si ∈ F

k, we have

ŝi = si (6)

where

ŝi = φi+T (y0,y1, . . . ,yi+T )
= φi+T (gn(x0, e0), . . . , gn(xi+T , ei+T )) (7)

Definition 7: Fix any (W, T, B, N) that satisfies (5). The
(W, T, B, N)-capacity, denoted by CW,T,B,N , is the supre-
mum of the rates attained by (n, k, T )F-streaming codes that
are (W, B, N)-achievable, i.e.,

CW,T,B,N � sup
{k

n

∣∣∣ There exists an (W, B, N)− (8)

achievable (n, k, T )F−streaming (9)

code for some F

}
(10)

1In case where B < W ≤ T + 1 we can achieve the capacity by reducing
the effective delay to Teff = W − 1 as discussed in [17]. Furthermore, the
capacity is trivially zero if W ≤ B as an erasure sequence that erases all the
channel packets becomes admissible.

Recently, independent works in [12], [13] established that
the capacity of C(W, B, N) is given by:

CW,T,B,N =
T − N + 1

T − N + B + 1
. (11)

D. Block Codes

As we show next, linear block codes serve as a building
block for capacity-achieving streaming codes. Therefore, we
recall several definitions and properties of these codes that will
be of use in the following Sections.

Let y[i] be the symbol received by the destination at time i
for each i ∈ {0, 1, . . . , n − 1}.

Definition 8: A point-to-point (n, k)F-block code consists
of the following

1) A sequence of k symbols {u[l]}k−1
l=0 where u[l] ∈ F.

2) A generator matrix G ∈ F
k×n. The source codeword is

generated according to

[x[0] x[1] . . . x[n − 1]] = [u[0] u[1] . . . u[k − 1]]G
(12)

3) A decoding function ϕl+n : F ∪ {∗} × . . . F ∪ {∗} → F

for each l ∈ {0, 1, . . . , k − 1}, where ϕl+n is used by
the destination at time to estimate u[l] according to

û[l] = ϕl+n(y[0], y[1], . . . , y[n − 1]) (13)

When the code is systematic, the generator matrix associated
with it can be expressed in the form of

G =
[
Ik×k

∣∣∣Pk×(n−k)

]
(14)

Definition 9 (Punctured Code): Let C be an (n, k)F

linear code. Given a subset P of [0 : n − 1], the
code C punctured on the coordinates in P , is the linear
code of length (n − |P|) obtained from C by deleting
all the coordinates in P . We denote the punctured code
as C

∣∣ P .
Definition 10 (Shortened Code): Let C be an (n, k)F linear

code. Given a subset P of [0 : n − 1], Consider the set
C(P) of codewords which are 0 on P ; this set is a sub-
code of C. Puncturing C(P) on P gives a code over F of
length n − |P| called the code shortened on P and denoted
as CP .

Corollary 1: For a systematic code with generator matrix
G, shortening on any coordinate i ∈ {0, . . . , k − 1}
results in a systematic code with generator matrix which
results from erasing the ith row and the ith column
in G.

Definition 11 (Parity-check matrix): A parity-check matrix,
H of a (n, k)F linear code C, is a generator matrix of the dual
code, C⊥. This means that a codeword c is in C if and only
if the matrix-vector product HcT = 0. When G is systematic
the parity-check matrix can be expressed as

H =
[
−PT

k×(n−k)

∣∣∣ I(n−k)×(n−k)

]
. (15)
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We recall the following Theorem and Lemma with respect
to the parity-check matrix.

Theorem 1 ([18], Theorem 1.5.7): Let P ∈ [0 : n−1]. Then

(C
∣∣
P)⊥ = (C⊥)P (16)

and

(CP)⊥ = (C⊥)
∣∣ P . (17)

Alternatively, this Theorem states that puncturing the gen-
erator matrix of C is equivalent to shortening its parity-
check matrix and that shortening the generator matrix of C
is equivalent to puncturing its parity-check matrix.

In the sequel, we use the following Lemma to derive a set
of conditions on the parity-check matrix.

Lemma 1 ([15], Lemma II.6): Consider an (n, k)F block
code C having a parity-check matrix H. Let the subset P of
[0 : n − 1] be erased from C and let i ∈ P . Then the i-th
code symbol in a codeword can be recovered from the code
symbols of the same codeword corresponding to coordinates
in Pc if:

hi /∈ span
〈
{hj}j∈P\{i}

〉
where hj denoted the j-th column of H.

In order to generate capacity-achieving streaming codes,
a subclass of linear block codes is required, which are block
codes that conform to a (stricter) decoding constraint.

Definition 12: A point-to-point (n, k, T )F-block code con-
sists of the following

1) A sequence of k symbols {u[l]}k−1
l=0 where u[l] ∈ F.

2) A generator matrix G ∈ F
k×n. The source codeword is

generated according to

[x[0] x[1] . . . x[n − 1]] = [u[0] u[1] . . . u[k − 1]]G
(18)

3) A decoding function ϕl+T : F ∪ {∗}× . . .F ∪ {∗} → F

for each l ∈ {0, 1, . . . , k − 1}, where ϕl+T is used by
the destination at time min{l+T, n−1} to estimate u[l]
according to

û[l]=

{
ϕl+T (y[0], y[1], . . . , y[l+T ]) if l+T ≤n−1
ϕl+T (y[0], y[1], . . . , y[n−1]) if l+T >n−1

(19)

Definition 13: An (n, k, T )F-block code is said to
be (W, B, N)-achievable if the following holds for any
(W, B, N)-erasure sequence e∞ ∈ Ω∞(W, B, N): Let

y[i] � g1(x[i], ei) (20)

be the symbol received by the destination at time i for each
i ∈ {0, 1, . . . , n − 1} where g1 is as defined in (3). For the
(n, k, T )F-block code, we have

û[i] = u[i] (21)

for all i ∈ {0, 1, . . . , k − 1} and all u[i] ∈ F where û is
constructed according to (19) and (20).

E. Generating Streaming (n, k, T )F-Streaming Code Which Is
(W, B, N )-Achievable From (n, k, T )F-Block Code Which Is
(W, B, N )-Achievable

The following Lemma shows that given an
(n, k, T )F-block code which is (W, B, N)-achievable, a
corresponding (n, k, n − 1, T )F-convolutional code (which is
an (n, k, T )F-streaming code) which is (W, B, N)-achievable
can be constructed.

Lemma 2 (Lemma 1 in [12]): Given an (n, k, T )F-block
code which is (W, B, N)-achievable, we can construct an
(n, k, n − 1, T )F convolutional code which is (W, B, N)-
achievable. More specifically, given that G is the generator
matrix of the (n, k, T )F-block code where gi,j is the entry
situated in row i and column j of G, we can construct the
n−1 generator matrices of the (n, k, n − 1, T )F-convolutional
code as follows. For each l ∈ {0, 1, . . . , n − 1},
construct

• If 0 ≤ l ≤ n − k

Gconv
l �

�
0k×ldiag (g0,l, g1,l+1, . . . , gk−1,l+k−1)0

k×(n−k−l)
�

• If n − k ≤ l ≤ n − 1

Gconv
l �

�
0k×l diag (g0,l, g1,l+1, . . . , gn−1,l+n−1)

0k−n+l×(n−l)

�

We note that G =
∑n−1

l=1 Gconv
l . In particular, if we let

si � [si[0] si[1] · · · si[k − 1]] and let

[xi[0] xi+1[1] · · · xi+n−1[n − 1]] �
[si[0] si+1[1] · · · si+k−1[k − 1]]G, (22)

i.e., we apply diagonal interleaving for all i ∈ Z+ ∪ {0},
then the symbols generated at time i by the (n, k, n − 1, T )F

convolutional code (which is an (n, k, T )F-streaming code)
are

xi � [xi[0] xi[1] · · · xi[n − 1]] . (23)

F. Main Result

The following Theorem is proved in Section III.
Theorem 2: For any (W, T, B, N) that meets (5), there

exists an explicit (n, k, T )F-block code with

R =
k

n

=
T − N + 1

T + B − N + 1
= CW,T,B,N (24)

which is (W, B, N)-achievable where the field size scales
quadratically with the delay constraint (O(T 2)).

Recalling Lemma 23, it follows that using an (n, k, T )F-
block code which is (W, B, N)-achievable with field size that
scales quadratically with the delay constraint (O(T 2)), an
(n, k, T )F-streaming code which is (W, B, N)-achievable can
be generated with a field size that scales quadratically with
the delay constraint (O(T 2)).

Thus, proving Theorem 2 means that for any (W, T, B, N)
that meets (5), there exists an (n, k, T )F-streaming code which
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is (W, B, N)-achievable can be generated where the field size
scales quadratically with the delay constraint (O(T 2)). Thus,
for any T, B, N , which meet (5), the capacity CW,T,B,N can
be achieved with field size that scales quadratically with the
delay.

II. EXPLICIT CONSTRUCTION OF CAPACITY-ACHIEVING

STREAMING CODE

We start by recalling some standard definitions of MDS
codes. We then present an explicit method of generating a
generator matrix of a (W, B, N)-achievable block code with
field size which scales quadratically with the delay constraint
which is based on MDS codes and concludes that it can be
used to generate a (W, B, N)-achievable streaming code with
the same field size.

A. MDS Codes

We show next that a building block in generating capacity-
achieving streaming code is a maximum distance separable
(MDS) block code. Linear block codes that achieve equality
in the Singleton bound are called MDS codes. A k×n matrix
G over a finite field Fq , with k ≤ n, will be referred to as a
generator matrix of an MDS matrix if any k distinct columns
of G form a linearly independent set.

We recall the following properties with respect to the
generator matrix of MDS code.

Property 1 ([19]): G generates a (systemtic) (n, k)F MDS
code if and only if every square submatrix of Pk×(n−k)

(defined in (14)) is non-singular, i.e. each square submatrix
is invertible and has full rank.

Corollary 2: We note that this Property means that any
rectangular submatrix of Pk×(n−k) also has a full rank which
equals the minimal dimension.

Another Corollary we use is the following.
Corollary 3: Define A ⊂ {1, . . . , k} and B ⊂ {1, . . . , B}.

The sub matrix PA,B which is generated from taking rows
with indices which match the values in A and columns
with indices which match the values in B is non-singular.
Thus,

rank(PA,B) = min (|A|, |B|) . (25)

This corollary holds since performing column swap or row
swap on the parity matrix of an MDS code results in an MDS
code. We further note that

Corollary 4: From Lemma 1 and Property 1 it follows that
any set of n− k column vectors from the parity matrix H of
an (n, k) MDS code are linearly independent.

Next, we state the following corollaries, which outline the
outcome of puncturing and shortening an MDS code.

Corollary 5: When C is an (n, k)F MDS code, puncturing
it on P results in an (n − |P|, k)F MDS code.

Corollary 6: When C is an (n, k)F MDS code, short-
ening it on P results in an (n − |P|, k − |P|)F MDS
code.

We conclude with the following Proposition on the minimal
size required to generate an MDS code.

Proposition 1 (Main conjecture on MDS codes( [20])):
The maximal length n of a MDS code of dimension k
over Fq is

n ≤
{

q + 2 q even and k = 3 or k = q − 1
q + 1 otherwise

This conjecture means that for any k and n (n ≥ k)
there exists an MDS codes with field size which scales
as O(n).

B. Explicit Construction of (W, B, N )-Achievable
(n, k, T )F-Block Code

Next we describe how to generate (an explicit) G which is
the generator matrix of (n, k, T )F-block code with a field size
which scales quadratically with the delay T . In Section III
we show that this code is (W, B, N)-achievable for any
(W, T, B, N) which meet (5).

We define
k = T − N + 1
n = k + B (26)

in the same manner as was defined in [12]. The construction
of the generator matrix is done in the following steps:

1) We start with an (n, k)Fq MDS code C′′ which has the
following generator matrix2

G′′=

1 0 0 0 · · · 0 Y · · · · · · · · · · · · Y
0 1 0 0 · · · 0 Y · · · · · · · · · · · · Y

0 0
. . . 0 · · · 0 Y · · · · · · · · · · · · Y

...
... 1

...
...

...
...

...
. . . 0

...
...

0 0 · · · · · · 0 1 Y · · · · · · · · · · · · Y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P′′
k×B

.

(27)

First we note that following Property 1, the minimal field
size for this code scales linearly with the delay T , i.e.
q = O(T ). We further note that following Corollary 2,
each submatrix of matrix P′′ has a full rank.

2) We generate code C′ with the generator matrix

G′ = MG′′

=

1 X · · · X 0 0 0 · · · 0 X · · · X

0 1 X · · · X 0 0 · · · 0 X · · ·
...

0 0
. . .

. . .
. . .

. . . 0 · · · 0 X · · · X
...

... 1
. . .

. . .
. . .

... X · · · X
...

...
. . . X · · · X 0

...
...

0 0 · · · · · · 0 1 X · · · X X · · · X

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k N − 1 B − N + 1

,

(28)

2We note that Y is not a constant element, but rather represent (potentially
different) element taken from Fq . See Section II-C for a specific example.
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where matrix M is an upper triangular matrix which is
denoted as

M =

1 Y ′ · · · Y ′ 0 · · · · · · 0
0 1 Y ′ · · · Y ′ 0 · · · 0
... · · · . . .

. . .
. . .

. . .
. . .

...
0 · · · 0 1 Y ′ · · · Y ′ 0
0 · · · 0 0 1 Y ′ · · · Y ′

0 · · · 0 0 0
. . .

. . . Y ′

0 · · · 0 0 0 0 1 Y ′

0 · · · 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N − 1

. (29)

where Y ′ = a · Y , a ∈ Fq denotes a function of one of
the (placeholder) Y symbols used in (27).3

The goal is to “spread” N −1 parity symbols diagonally
with the information symbols. As it is easy to see that
code C′ (and also C′′) can recover from a burst of size B
starting at time 0 only at time T ′ = k+B−1. It follows
that if B > N we have T ′ > T . Therefore, this code
does not meet the required maximal delay constraint.
Nevertheless, as we show next, it is an important interim
step.
Matrix M is an upper-triangular matrix. Thus, it is a full-
rank matrix, and hence it is invertible. Since an erasure
of any l columns in G′ can be translated to erasure of l
columns in G′′ (by multiplying with the inverse of M),
the following property holds.
Property 2: Block code C′ with generator matrix G′ is
an (n, k)Fq MDS code.

3) Finally, denoting with Fq2 the extension field of Fq , we
replace the (B−N +1)×(B−N+1) upper right matrix
with α · IB−N+1 where α ∈ Fq2 \ Fq which generates
the code C with the generator matrix

G =

1 X · · · X X 0 · · · 0 · · · 0 α · · · 0

0 1 X · · · X X · · · 0 · · · 0 0
. . . 0

0 0
. . .

. . .
. . .

. . .
. . . 0 · · · 0 0 · · · α

...
... 1

. . .
. . .

. . .
. . .

... X · · · X

...
...

. . . X · · · X X 0
...

...
0 0 · · · · · · 0 1 X · · · X X X · · · X

�
���������������

�
���������������

k N − 1 B − N + 1

.

(30)

We note that this operation increased the field size of the
code, thus the minimal required field size now scales as
O(T 2).

The generator matrix G is composed of the following three
blocks

• G1 - The upper left k × (k + N − 1) sub-matrix of G.

3Similar to Y , Y ′ is not a constant element but rather represent (potentially
different) element taken from Fq .

• G2 - The lower right (k − (B − N + 1)) ×
(n − (B − N + 1)) sub-matrix of G.

• G3 - The upper right (B − N + 1)× (B − N + 1) sub-
matrix of G.

These blocks are depicted in (31) below.

G =

1 X · · · X X 0 · · · 0 · · · 0 α · · · 0

0 1 X · · · X X · · · 0 · · · 0 0
. . . 0

0 0
. . .

. . .
. . .

. . .
. . . 0 · · · 0 0 · · · α

...
... 1

. . .
. . .

. . .
. . .

... X · · · X

...
...

. . . X · · · X X 0
...

...
0 0 · · · · · · 0 1 X · · · X X X · · · X

�
��������������

�
													


G1

G2

G3

.

(31)

Before showing that generator matrix G generates an
(n, k, T )Fq2 -block code (where q = O(T )) which is
(W, B, N)-achievable, we denote the following properties of
G1 and G2.

Property 3: Block G1 is a generator matrix of a
(k + N − 1, k)Fq MDS code.

This can be viewed from Corollary 5 and noting that
G1 is generated by of puncturing (B − N+1) columns
from G′ which is a generator matrix of (n, k) MDS
code.

Property 4: Block G2 is a generator matrix of an
(n − (B − N + 1), k − (B − N + 1))Fq MDS code.

This property holds since it can be assumed that G2 is gen-
erated from G′ by assuming that the first (B−N +1) symbols
encodes using G′ ({x[0], . . . , x[B−N ]}) were received with-
out errors (equivalently assume that {u[0], . . . , u[B − N ]} =
{0, . . . , 0}). Even though G′ is not systematic, due to its
structure receiving {x[0], . . . , x[B−N ]} without errors means
that {u[0], . . . , u[B−N ]} can be decoded correctly and hence
can be cancelled from the other received symbols. Therefore,
the remaining code is an (n− (B−N +1), k− (B−N +1))
MDS code over Fq.

Following Properties 3 and 4 we denote the codes induced
by G1 and G2 as MDS1 and MDS2.

Remark 1: Using (26) it follows that MDS2 is a (T, T −
B)Fq MDS code.

Remark 2: In case T > B, symbols {x[B], . . . , x[T − 1]}
are composed only from {u[B − N + 1], . . . , u[k − 1]}, i.e.,
these are the only symbols of MDS2 without contribution from
{u[0], . . . , u[B − N ]} (which are not information symbols of
MDS2).

This can be viewed from noting that the last B − N + 1
columns of G carry information on {u[0], . . . , u[B − N ]}
(due to G3). Further, Since G1 is upper triangular (with
N diagonals), the first B columns also carry information on
{u[0], . . . , u[B − N ]}.

Alternatively, we note that symbols {x[B], . . . , x[T − 1]}
are the outcome of multiplying u[0], . . . , u[k − 1] with
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G:,B+1:T (which is marked with a solid frame in (2) below).
From the construction of G, sub-matrix G1:B−N+1,B+1:T is
a matrix of zeros hence these symbols does not contain any
information about {u[0], . . . , u[B − N ]}.

Recalling that k − 1 = T − N we have that the T − B
symbols {x[B], . . . , x[T − 1]} are composed only of T − B
information symbols {u[B − N + 1], . . . , u[T − N ]}.

G =

1 X · · · X X 0 · · · 0 · · · 0 α · · · 0

0 1 X · · · X X · · · 0 · · · 0 0
. . . 0

0 0
. . .

. . .
. . .

. . .
. . . 0 · · · 0 0 · · · α

...
... 1

. . .
. . .

. . .
. . .

... X · · · X

...
...

. . . X · · · X X 0
...

...
0 0 · · · · · · 0 1 X · · · X X X · · · X

�
��������������

�
													
G2

n = T + B − N + 1

B − N + 1

B − N
+1

B − N + 1N − 1

B
x[B] x[T − 1]

.

(32)

Remark 3: Although G is not systematic, since G:,1:k

is upper triangular, shortening over the set of coordinates
{1, . . . , i} where i ≤ k results in an MDS code with a
generator matrix which can be generated from G by deleting
the first i rows and first i columns. The above holds since
assuming that given G, assuming coordinates {1, . . . , i} are
zero is equivalent to assuming that u[0] = · · ·u[i] = 0 which
is equivalent to delete the first i rows and columns in G.

Remark 4: Although G is not a systematic generator matrix,
we note that G̃ = M−1G is a systematic generator matrix.
Since M is an invertible (upper triangular) matrix, we prove
in Section IV that the parity-check matrix of G̃ meets a set
of conditions defined in [15] on the parity-check matrix of a
capacity-achieving code.

C. Example

As an example, we look at the case where B = 4,
N = 3 and T = 6. The first phases of the generator matrix are
generated over GF (11). In the final stage we take an element
from GF (121) \ GF (11). The resulting generator matrix of
the (8, 4, 6)GF (121) code is:

T = 0 1 2 3 4 5 6 7
1 10 9 0 0 0 α 0
0 1 9 1 0 0 0 α
0 0 1 6 9 0 4 8
0 0 0 1 4 1 9 8

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠, (33)

where

• MDS1 (marked in blue and solid frame in (33)) is a
(6, 4)GF(11) MDS code.

• MDS2 (marked in red and dashed frame in (33)) is a
(6, 2)GF(11) MDS code.

We set (for example) α = 0 · 11 + 1 · 11 as the element
from GF (121)\GF (11).4 Next, we demonstrate the decoding
process for several cases of erasures. We focus on decoding
symbol u[0] and show for that for any burst of B = 4
symbols or N = 2 random erasures, u[0] can be recovered
with maximal delay of T = 6.

As decoding symbol u[0] when symbol x[0] is not erased
is trivial, we focus only on cases where x[0] is erased:

• A burst of size B = 4 starting at time 0

T = 0 1 2 3 4 5 6 7
1 10 9 0 0 0 α 0
0 1 9 1 0 0 0 α
0 0 1 6 9 0 4 8
0 0 0 1 4 1 9 8

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠,

Using MDS2, u[2] and u[3] can be decoded at time 5
since we have two linear independent equations from
MDS2 which is (6, 2)GF(11) MDS code. Thus, u[2] and
u[3] can be recovered at time 5. Cancelling u[2] and u[3]
from x[6] results in decoding u[0] at time 6 as required.

• N = 3 arbitrary erasures where x[6] is erased:

T = 0 1 2 3 4 5 6 7
1 10 9 0 0 0 α 0
0 1 9 1 0 0 0 α
0 0 1 6 9 0 4 8
0 0 0 1 4 1 9 8

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠.

Using MDS1, which is (6, 4)GF(11) MDS code, all infor-
mation symbols can be decoded at time 4 thus meeting
the delay constraint T .

• N = 3 arbitrary erasures where x[6] is not erased:

T = 0 1 2 3 4 5 6 7
1 10 9 0 0 0 α 0
0 1 9 1 0 0 0 α
0 0 1 6 9 0 4 8
0 0 0 1 4 1 9 8

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠. (34)

We note that the (3 × 5) lower right matrix of G1

(marked in dashed blue in (34)) is a generator matrix of
(5, 3)GF(11) MDS code which is the outcome of short-
ening G1 over P = {0} (denoted as MDS1

1). Receiving
symbols {x[1], x[2], x[3]} with no erasures means that
bringing MDS1

1 to an equivalent row echelon form results
in three linear combinations of u[j] ∈ {u[1], u[2], u[3]}
and u[0] (with coefficients taken from GF(11)) where
each combination consists only of u[j] and u[0]. Denoting
these combination as {ũ[1] = 10u[0] + u[1], ũ[2] =
7u[0]+u[2], ũ[3] = 3u[0]+u[3]}, using ũ[2] and ũ[3], u[2]
and u[3] can be cancelled from x[6]. Since we assume

4As one of the most common examples for field extension is generating the
complex field from the real field, we borrow the complex field notation to
indicate that α is from the extension field with no intersection with the base
field (i.e., in the example of complex fields, it is equivalent to taking a pure
imaginary number).
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that the element α = 0 · 11 + 1 · 11 ∈ FGF(121)\GF(11), it
is guaranteed that it is not nulled out (since the column
operations are performed over GF(11)). Hence, u[0] can
be decoded at time 6 as required.
Equivalently, the dashed part of g6 (the part of x[6] which
is a function of {u[1], u[2], u[3]}) is in the span of MDS1

1.
Since we have three symbols from MDS1

1, the dashed part
of g6 can be cancelled. Since we assume that the element
α = 0·11+1·11 ∈ FGF(121)\GF(11), it is guaranteed that it
is not nulled out (since column operations are performed
over GF(11)). Hence, u[0] can be recovered.

The decoding of u[i] ∈ {u[1], u[2], u[3]} is done in a similar
manner where we assume by induction that {u[0], . . . , u[i−1]}
have already been recovered by time T + i.

We thus showed that the suggested (8, 4, 6)GF (121) block
code is (7, 4, 3)-achievable. Therefore, using Lemma 23, a cor-
responding (8, 4, 6)GF (121)-streaming code which is (7, 4, 3)-
achievable is generated by apply diagonal interleaving. An
example of a single diagonal is given in Table I below.

III. PROOF OF THEOREM 2

We prove next that the (n, k, T )Fq2 block code described
above is (W, B, N) achievable. The field size of this con-
struction scales as O(T 2). We therefore describe the decoding
function ϕl+T defined in Definition 12 and prove it can recover
any u[l] (for any l ∈ {0, . . . , k−1}) with maximal delay of T .

Decoding {u[0], . . . , u[B − N ]}:
We analyze the two different types of erasures:

• A Burst of length B starting at time i
Decoding u[0]:
Following Property 4 and Remark 1 we recall that MDS2

is a (T, T − B)Fq MDS code. A burst of B symbols start-
ing at time 0 means that symbols {x[B], . . . , x[T − 1]}
are not erased. Recalling Remark 2, these symbols
don’t have an interference from information symbols
{u[0], . . . , u[B − N ]}. Therefore, information symbols
{u[B − N + 1], . . . , u[k − 1]} can be recovered using
MDS2.
Noting that x[T ] is composed of u[0] and {u[B −
N + 1], . . . , u[k − 1]}, after symbols {u[B − N +
1], . . . , u[k − 1]} are decoded, they can cancelled from
x[T ] thus u[0] can be decoded.5

Decoding u[i] ∈ {u[1], . . . , u[B − N ]}:
Noting that x[i+T ] is composed of u[i] and {u[B−N +
1], . . . , u[k − 1]}, we again perform the decoding in two
steps:

– Decoding of {u[B − N + 1], . . . , u[k − 1]} using
MDS2.

– Decoding of u[i] from x[i+T ] by canceling {u[B−
N + 1], . . . , u[k − 1]} from it.

We first assume by induction that symbols
{u[0], . . . , u[i − 1]} have already been recovered
by time T + i, thus we cancel information symbols
{u[0], . . . , u[i − 1]} from {x[i + B], . . . , x[i + T − 1]}.

5In case T = B it can be shown that G3 = α · IB−N+1 hence s[0] can
be recovered directly from x[T ].

Denoting {x̃[i+B], . . . , x̃[i+T−1]} as the symbols after
the cancellation, we note that {x̃[i+B], . . . , x̃[i+T −1]}
belong to MDS2.
Therefore, using MDS2 (which we recall again that fol-
lowing Remark 1 is (T, T−B)Fq MDS code), information
symbols {u[B −N + 1], . . . , u[k]} can be recovered and
cancelled from x[i + T ] and thus u[i] can be recovered.

• N arbitrary erasures
Decoding u[0]:
First, we note that we assume that symbol x[0] is one
of the erased symbols otherwise decoding is trivial.6 We
further differentiate between the following two cases

– Symbol x[T ] is erased
We note that in this case, in MDS1 we have a
maximum of N − 1 erasures. Following Property 3,
MDS1 can correct any N −1 erasures with maximal
delay of T and hence information symbol u[0] can
be recovered with a maximal delay of T .

– Symbol x[T ] is not erased
Shortening MDS1 on coordinate {0} results in an
(k−1+N −1, k−1)Fq MDS code with a generator
matrix that is generated from G1 by deleting the first
row and column. Denoting this code as MDS1

1, its
generator matrix is depicted in (35) as the dashed
(k − 1) × (k − 1 + N − 1) lower right submatrix of
G1.

1 X · · · X 0 0 0 · · · 0 α
0 1 X · · · X 0 0 · · · 0 0

0 0
. . .

. . .
. . .

. . . 0 · · · 0 0
...

... 1
. . .

. . .
. . .

... X
...

...
. . . X · · · X 0

...
0 0 · · · · · · 0 1 X · · · X X

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G1

(35)

Symbols {x[1], . . . , x[T − 1]} have up to N − 1
erasures (since we assumed x[0] is erased). There-
fore, using MDS1

1, we can generate k − 1 linear
combinations of the form

ũ[j] = aj · u[j] + bj · u[0]

where j ∈ {1, . . . , k−1} and aj, bj ∈ Fq and aj 
= 0.
Since α ∈ Fq2 \ Fq, {u[1], . . . , u[B − N ]} can be
cancelled from symbol x[T ] using {ũ[1], . . . , ũ[B −
N ]} while it is guaranteed that α is not nulled out7,
symbol u[0] can be recovered with a delay of T .

Decoding u[i] ∈ {u[1], . . . , u[B − N ]}:
We first assume by induction that {u[0], . . . , u[i−1]} have
already been recovered by time T + i. We further assume
that their contribution on symbols {x[i], . . . , x[i + T ]} is
cancelled. After cancelling symbols {u[0], . . . , u[i − 1]}

6If N = 1 it means that the only erasure is that of symbol x[0] and hence
decoding is done as described next for the case when symbol x[T ] is not
erased.

7Since all elements in MDS2 belong to Fq , the cancellation is done by
multiplying {ũ[1], . . . , ũ[B − N ]} with coefficients Fq .
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TABLE I

AN EXAMPLE OF APPLYING DIAGONAL INTERLEAVING TO GENERATE (8, 4, 6)GF (121) -STREAMING CODE FOR A (8, 4, 6)GF (121) BLOCK CODE

from MDS1 we are left with a (k − i + N − 1, k − i)Fq

MDS code (which can recover any N − 1 erasures).
Equivalently, this can be viewed as shortening MDS1 on
coordinates {0, . . . , i − 1}. We denote it as MDSi

1.
Since x[i] is composed of (a sub group) of
{u[0], . . . , u[i]} and we assumed that {u[0], . . . , u[i−1]}
have been decoded correctly, if x[i] is not erased, u[i]
can be trivially decoded.
Therefore, assuming x[i] is erased, the decoder does the
following:

– In case symbol x[i + T ] is erased
Assuming x[i + T ] is erased means that there are at
most N −1 erasures in MDSi

1. Recalling that MDSi
1

can recover any N − 1 erasures, all information
symbols can be decoded up to time T + i.

– Symbol x[i + T ] not erased
We note that the lower right k − (i + 1) × k−
(i+1)+N−1 sub-matrix of G1 is a generator matrix
of a (k−(i+1)+N−1, k−(i+1))Fq MDS code (can
be also viewed as the outcome of shortening MDSi

1

on coordinate {i}). We denote it as MDSi+1
1 . We

may assume that symbols {x[i+1], . . . , x[i+T −1]}
have up to N − 1 erasures. Hence, using MDSi+1

1 ,
we can generate k− i−1 linear combinations of the
form

ũ[j] = aj · u[j] + bj · u[0]

where j ∈ {i + 1, . . . , k − 1} and aj , bj ∈ Fq and
aj 
= 0. Next, {ũ[i + 1], . . . , ũ[k − 1]} are cancelled
from symbol x[i + T ] using operations over Fq and,
again, it is guaranteed that α ∈ Fq2 \ Fq is not
cancelled, thus u[i] can be recovered.

Decoding
{
u[B − N + 1], . . . , u[k − 1]

}
:

We first assume by induction that {u[0], . . . , u[B − N ]} have
already been recovered by time T +B−N and cancelled from
the received symbols. This means that we are left with MDS2.
Recalling Property 4 MDS2, is a (k−(B−N +1)×(n−(B−
N+1)Fq MDS code which means it can correct any B erasures
within the delay constraint (∀i ∈ {B −N + 1, . . . , k − 1} the
information symbols transmitted at time i is recovered at time
T + B − N + 1 ≤ i + T ) . Recalling that B ≥ N it means
that either a burst of B erasures or arbitrary N erasures can
be correctly decoded within the delay constraint.

IV. ALTERNATIVE PROOF OF THEOREM 2 - ANALYSIS OF

THE PARITY-CHECK MATRIX

In [15], a set of requirements on the parity-check matrix
of (n, k, T )F-block code which is (W, N, B)-achievable were
defined. In this section we first recall this set of requirements
and than we show that the parity-check matrix of the code
suggested in Section II meet these requirements.

A. Requirements on the Parity-Check Matrix (Section II.F
in [15])

Let i denote an erased coordinate. Due to the delay con-
straint, all symbols in time [i + T + 1 : n − 1] are unavailable
to the decoder. We assume though that during the decoding
of symbol x[i] all symbols x[0], . . . , x[i − 1] are available.
Therefore we have:

x[0], . . . , x[i − 1]︸ ︷︷ ︸
Known

, x[i]︸︷︷︸
Symbol to be recovered

, (36)

x[i+1], . . . , x[i+1], . . . , x[i+T ]︸ ︷︷ ︸
All the non−erased symbols are accessible

, x[i+T +1], . . . , x[n−1]︸ ︷︷ ︸
Inaccessible symbols

(37)

Let K denote the set of coordinates of {0 : i − 1} and U
denote the set of coordinates of {i + T + 1 : n − 1}. Thus
when decoding x[i], we assume that any x[j], j ∈ K are
known, any x[j], j ∈ U are inaccessible and that non-erased
code symbol x[j], j ∈ {i + 1 : t + T } are also accessible.

The effective code used to decode x[i] is obtained from C
by shortening it on the coordinates in K and puncturing it
on coordinates in U . Recalling Theorem 2, puncturing of the
generator matrix is equivalent to the shortening of the parity-
check matrix, and the shortening of the generator matrix is
equivalent to the puncturing of the parity-check matrix.

Let H be the parity-check matrix of the code C. For 0 ≤
l ≤ B − N , set

H(l) =
[
h(l)

0 , . . . ,h(l)
l+T

]
, (38)

be the parity-check of the code C restricted to the coordinates
[0 : l +T ] (alternatively, we can say that it is the parity-check
of a code which is the outcome of puncturing coordinates
[l + T + 1 : n] from the original code). This means that H(l)
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is the derived from H by shortening coordinates [l+T +1 : n].
Therefore, H(l) is a N + l × T + l + 1 matrix.

Recalling Lemma 1, this means that in order to guarantee
recovery of all information symbols with delay constraint T
from any admissible erasure event the following conditions on
H and

{
H(l), 0 ≤ l ≤ B − N

}
are sufficient:

1) Condition B1 For 0 ≤ l ≤ B − N , the l-th column,
h(l)

l of H(l) should be linearly independent of the set of
(B − 1) columns{

h(l)
j , l + 1 ≤ j ≤ l + B − 1

}
2) Condition R1 For 0 ≤ l ≤ B − N , the l-th column,

h(l)
l of H(l) should be linearly independent of the any

set of (N − 1) columns taken from the set{
h(l)

j , l + 1 ≤ j ≤ l + T
}

3) Condition B2 For B −N + 1 ≤ l ≤ T −N + 1, the set

{hj , l ≤ j ≤ l + B}

of columns of H should be linearly independent.
4) Condition R2 Any set of N columns from the set

{hj , B − N + 1 ≤ j ≤ T + B − N + 1}

of columns of H should be linearly independent.

We show next that all these conditions hold for the parity-
check matrix of the suggested code, which is at a rate that
equals the capacity. Therefore, it proves that the suggested
code achieves that capacity.

B. Rank of Matrix Multiplication

In analyzing the parity matrix of the suggested code, we use
the following properties of the rank of matrix multiplication.

Lemma 3: Let A be K×L matrix and B an L×M matrix.
Then

rank(AB) ≤ min (rank(A), rank(B)) (39)

The proof of Lemma 3 is given in Appendix B.
Lemma 4 (Sylvester’s rank inequality, [21]): Let A be K×

L matrix and B an L × M matrix. Then

rank(AB) ≥ rank(A) + rank(B) − L (40)

Corollary 7: If A is a square (L × L) full rank matrix,
Sylvester’s rank inequality means that

rank(AB) = rank(B). (41)

If B is a (L × L) full rank matrix, from Sylvester’s rank
inequality we have

rank(AB) = rank(A). (42)

C. Analysis of the Parity-Check Matrix of the Suggested
Block Code

As mentioned in Remark 4, the suggested code can be
transformed to a systematic block code. The generator matrix
of the systematic code can be denoted as

G̃ = M−1G (43)

where M and G are defined in (29) and (31).
Since G is generated from G′ (defined in (28)) by replacing

the (B − N + 1) × (B − N + 1) upper right matrix with
α ·IB−N+1 where α ∈ Fq2 \Fq and recalling that G′ = MG′′

(where G′′ is a systematic matrix defined in (27)) we have that

G̃ =

1 0 · · · · · · · · · · · · 0 Y · · · Y f1,1(α) · · · · · · f1,B−N+1(α)

0 1 0 · · · · · · · · · 0 Y · · · Y Yα f2,2(α) · · · f2,B−N+1(α)

0 0
.
.
. · · ·

.

.

.

.

.

. 0 Y · · · Y

.

.

.

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

. 0 Y · · · Y Yα · · · Yα fB−N+1,B−N+1(α)

.

.

.

.

.

.

.
.
.

.

.

. 0 Y · · · Y Y · · · Y Y
0 0 · · · · · · 0 1 0 Y · · · Y Y · · · Y Y
0 0 · · · · · · · · · 0 1 Y · · · Y Y · · · Y Y

�
�����������������������

�
�����������������������

k N − 1 B + N − 1

.

(44)

where fi,j(α) = a + b · α where a, b ∈ Fq is a function of
α (where in general, f(α) = 0 is no precluded, besides for
specific functions which are defined in Property 5 below), and
Yα stands for elements from the base field (Fq) which are
now different from the original elements in P′′. More details
on the generation of G̃ and each of its elements are given in
Appendix A.

We note the following property
Property 5: For any i ∈ {0, . . . , B −N + 1}, fi,i(α) 
= 0.
This property holds since fi,i(α) is the outcome of multi-

plying the i’th row in M−1 with the k+i column of G. Since
M−1

i,i = 1 and this is the only element which multiplies α it
follows that fi,i(α) 
= 0 (summing α with elements from Fq

cannot null it).
Therefore, the parity-check matrix can be written as We note

that several examples of H(l) are marked (each in different
color and different type of frame) in (45), shown at the bottom
of the next page.

1) Condition B1

Before showing condition B1 holds, we show the following
properties which will be used in the proof. Denote the lower
right (T − B × B) matrix of G

Gk−(T−B)+1:k,n−B+1:n � GT−B,B

and the upper right (B × T − B) matrix of M−1

M−1
1:B,n−(T−B)+1:n � M−1

B,T−B.

Property 6: GT−B,B has rank of min(T −B, B). Further,
any sub-matrix formed by taking w columns of GT−B,B has
a rank of min(T − B, w).
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Proof: See Appendix C
Property 7: The first B − N + 1 rows of M−1

B,T−B are a
linear function of the last N − 1 rows.

Proof: See Appendix D.
Condition B1 requires that h(l)

l is linearly independent
of the set of (B − 1) columns which follows it. There-
fore, we first limit H(l) to contain a maximum of B
columns starting for its l’th column. Further, we note the
following

• If B + l < k. We denote the group of B columns starting
from the l’th column of H(l) as Ĥ(l) = H(l)

:,l:l+B . It
follows the dimensions of Ĥ(l) are N + l × B.

• If B + l ≥ k. We note than when B + l ≥ k, the group of
B columns starting from the l’th column of H(l) contains
B + l − k vectors from IB×B (the unit matrix). These
B + l−k are part of the basis that spans this group of B
vectors. Hence, its suffices to analyze this group without
the top B + l − k rows and last B + l − k columns.
Therefore, we denote by Ĥ(l) the group of B vectors
starting from l’th column without the top B + l− k rows
and last B+l−k. Hence Ĥ(l) = H(l)

B+l−k+1:N+l+1,l+1:k.
It follows that the dimensions of Ĥ(l) are N +(k−B)×
k − l.

Some examples of Ĥ(l) (where l = 0 and l = k − B) and
for Ĥ(l) (where l = B − N) are given in (46), as shown at
the bottom of the next page, where each Ĥ(l) is denoted with
different color and different type of frame.

• B + l < k: analyzing Ĥ(l).

Proving condition B1 is equivalent to prove that column ĥ(l)
0

(the first column in Ĥ(l)) is linearly independent of the rest
of the B−1 columns of Ĥ(l) which we denote as Ĥ(l)

2:B. This
in turn is equivalent to show that

rank(Ĥ(l)
2:B) ≤ rank(Ĥ(l)) − 1.

Hence, we carefully analyze next the rank of these matrices.

Recalling that Ĥ(l) has N + l rows and B columns, an
example of Ĥ(l) (marked in solid) is

Ĥ(l) = H(l)
1:N+l,l+1:l+B

=

−Y · · · · · · · · · · · · · · · −Y

...
...

...
...

...
...

...
−Y · · · · · · · · · · · · · · · −Y

−Yα · · · · · · −Yα −Y · · · −Y

...
...

...
...

...
...

...
fl+1,l+1(α) −Yα · · · −Yα −Y · · · −Y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B−N +1−l N +l−1

B

N +l .

(47)

We start with analyzing the rank of Ĥ(l). First, we note that
since we want to show condition B1 for 0 ≤ l ≤ B − N it
follows that N + l ≤ B thus the maximal rank of Ĥ(l) is
N + l.

We note that when B + l ≤ k, each Ĥ(l) contains a
(N + l − 1×N + l − 1) sub-matrix of P′′ marked in dashed
in (47). Following Corollary 2, each sub-matrix of P′′ has a
full rank thus the rank of this sub-matrix is N + l − 1. This
means we can transform Ĥ(l) to an equivalent row echelon
form of[

0N+l−1×B−(N+l−1) IN+l−1

f̃l+1,l+1(α) −Ỹα · · · −Ỹα −Ỹ · · · −Ỹ

]
,

(48)
where f̃l+1,l+1(α) ,each −Ỹα and each −Ỹ are the outcome of
the column operations performed on Ĥ(l) (over Fq). Following
Property 5 we have that fl+1,l+1(α) 
= 0 and since all
column operations were performed over Fq it follows that
f̃l+1,l+1(α) 
= 0. Thus, we have that

rank(Ĥ(l)) = N + l. (49)

H =
[
−P̃T

∣∣∣ IB×B

]

=

−Y · · · · · · · · · −Y · · · −Y 1 0 · · · · · · · · · · · · 0
...

...
...

...
...

...
... 0 1 0 · · · · · · · · · 0

−Y · · · · · · · · · −Y · · · −Y 0 0
. . . · · ·

...
... 0

f1,1(α) −Yα · · · −Yα −Y · · · −Y
...

... 1
. . .

... 0

f1,2(α) f2,2(α)
. . .

...
... · · · −Y

...
... 0

. . .
... 0

...
...

. . . −Yα

...
... −Y

...
... 0

. . . 0
f1,B−N+1(α) f2,B−N+1(α) · · · fB−N+1,B−N+1(α) −Y · · · −Y 0 0 · · · · · · 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B − N + 1 T − B B

N − 1

B − N + 1

.

(45)
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Next, we analyze the rank of Ĥ(l)
2:B . We note that

Ĥ(l) is generated by taking the transpose of multiplying
M−1

(l+1:B+l,l+1:k) with G(l+1:k,k+1:k+N+l) which we denote

as G(l) Hence,

Ĥ(l) =
(
M−1

(l+1:B+l,l+1:k) × G(l)
)T

. (50)

In (51) below we show examples of G(l) when we assume
B + l ≤ k for all 0 ≤ l ≤ B − N .

G =

1 X · · · X 0 0 0 · · · 0 α · · · 0

0 1 X · · · X 0 0 · · · 0 0
. . . 0

0 0
. . .

. . .
. . .

. . . 0 · · · 0 0 · · · α
...

... 1
. . .

. . .
. . .

... X · · · X
...

...
. . . X · · · X 0

...
...

0 0 · · · · · · 0 1 X · · · X X · · · X

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G(0)

G(1)

B−N
+1

T−B

k N − 1 B − N + 1

.

(51)

We note that since in generating G we replaced the upper
right (B−N+1)×(B−N+1) matrix of G′ with αIB−N+1 it
means that there are only T−B+1 non-zero rows in G(l)

(l+2:k,:)
(the first row and the last T − B rows).

Therefore, denoting with G(l)
T−B,: the last T − B rows of

G(l), we have

Ĥ(l)
2:B =

(
M−1

(l+2:B+l,2+B−N :k) × G(l)
T−B,:

)T

, (52)

where M−1
(l+2:B+l,2+B−N :k) is acquired by taking the B−1×

T − B lower right matrix of M−1
(l+2:B+l,1:k). Several exam-

ples of M−1
(l+2:B+l,2+B−N :k) and M−1

(l+2:B+l,1:k) for different
values of l (where the full matrix is marked in solid and the

partial matrix is marked in dashed) are shown in (52).

M−1 =

1 Y ′′ · · · Y ′′ Y ′′ · · · · · · Y ′′

0 1 Y ′′ · · · Y ′′ Y ′′ · · · Y ′′

... · · · . . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 Y ′′ · · · Y ′′ Y ′′

0 · · · 0 0 1 Y ′′ · · · Y ′′

... · · ·
...

...
...

. . .
. . . Y ′′

0 · · · 0 0 0 0 1 Y ′′

0 · · · 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B

T − B

N − 1 ,

M−1 =

1 Y ′′ · · · Y ′′ Y ′′ · · · · · · Y ′′

0 1 Y ′′ · · · Y ′′ Y ′′ · · · Y ′′

... · · · . . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 Y ′′ · · · Y ′′ Y ′′

0 · · · 0 0 1 Y ′′ · · · Y ′′

... · · ·
...

...
...

. . .
. . . Y ′′

0 · · · 0 0 0 0 1 Y ′′

0 · · · 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B

T − B

N − 1 ,

(53)

Noting that M−1
(l+2:B+l,2+B−N :k) contains B −N − l rows

from the first B−N +1 rows of M−1
B,T−B (depicted in (94)),

and recalling Property 7, it follows that these rows are a linear
function of the last N − 1 rows of M−1

B,T−B (which are also
a part of M−1

(l+2:B+l,2+B−N :k)). Further, the lower N − 1 + l

rows of M−1
(l+1:B+l,2+B−N :k) are an upper triangular matrix

H =
[
−P̃T

∣∣∣ IB×B

]

=

−Y · · · · · · · · · −Y · · · −Y 1 0 · · · · · · · · · · · · 0
...

...
...

...
...

...
... 0 1 0 · · · · · · · · · 0

−Y · · · · · · · · · −Y · · · −Y 0 0
. . . · · ·

...
... 0

f1,1(α) −Yα · · · −Yα −Y · · · −Y
...

... 1
. . .

... 0

f1,2(α) f2,2(α)
. . .

...
... · · · −Y

...
... 0

. . .
... 0

...
...

. . . −Yα

...
... −Y

...
... 0

. . . 0
f1,B−N+1(α) f2,B−N+1(α) · · · fB−N+1,B−N+1(α) −Y · · · −Y 0 0 · · · · · · 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ĥ(0)

Ĥ(k−B)

Ĥ(B−N)

B − N + 1 T − B

N − 1

B − N + 1

(46)
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therefore,

rank(M−1
(l+1:B+l,2+B−N :k)) = N − 1 + l. (54)

Since taking the last T − B rows of G(l) results in a
matrix which is a sub-matrix of GT−B,B (by taking only
N + l columns out of the B columns of GT−B,B), recalling
Property 6, it follows that

rank(G(l)
T−B,:) = min(T − B, N + l). (55)

Therefore, following Lemma 3, (54) and (55) we have

rank(Ĥ
(l)
2:B) ≤min

�
rank(M−1

(l+2:B+l,2+B−N:k)), rank(G
(l)
T−B,:)

�
min(T − B, N − 1 + l) (56)

and since we assume

B + l ≤ k

= T − N + 1, (57)

we have N − 1 + l ≤ T − B. Thus,

rank(Ĥ(l)
2:B) ≤ N − 1 + l (58)

Therefore, since rank(Ĥ(l)) = N + l and rank(Ĥ(l)
2:B) ≤

N − 1+ l, it follows that ĥ(l)
0 is linearly independent with the

following B − 1 columns.

• B + l ≥ k: analyzing Ĥ(l).

Recalling that Ĥ(l) has N + k − B rows and k − l columns,

proving condition B1 is equivalent to prove that column ĥ(l)
0

(the first column in Ĥ(l)) is linearly independent of the rest
of the k− l− 1 columns of Ĥ(l) which we denote as Ĥ(l)

2:k−l.
This in turn is equivalent to show that

rank(Ĥ(l)
2:k−l) ≤ rank(Ĥ(l)) − 1.

Hence, we carefully analyze next the rank of these matrices.
An example of Ĥ(l) is

Ĥ(l) = H
(l)
B+l+k+1:N+l,l+1:k

=

−Y · · · · · · · · · · · · · · · −Y

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
−Y · · · · · · · · · · · · · · · −Y

−Yα · · · · · · −Yα −Y · · · −Y

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
fl+1,l+1(α) −Yα · · · −Yα −Y · · · −Y

�
�������������

�
�������������

B − N + 1 − l T − B

k − l

B + l
−k

N + k
−B

N + l .

(59)

We first note that each Ĥ(l) contains a (N + k − B − 1 ×
T −B) sub-matrix of P′′ (marked in dashed in (59)). We note
that

N + k − B − 1 = N + (T − N + 1) − B − 1
= T − B (60)

Hence, the rank of this matrix is T − B.

This means we can transform Ĥ(l) to an equivalent row
echelon form of

Ĥ(l) =
[

0T−B×B−N+1−l IT−B

f̃l+1,l+1(α) −Ỹα · · · −Ỹα −Ỹ · · · −Ỹ

]
(61)

where f̃l+1,l+1(α) ,each −Ỹα and each −Ỹ are the out-
come of the column operations performed on Ĥ(l). Following
Property 5 we have that fl+1,l+1(α) 
= 0 and since all
column operations were performed over Fq it follows that
f̃l+1,l+1(α) 
= 0. Thus, we have that

rank(Ĥ(l)) = T − B + 1. (62)

Proving condition B1 is equivalent to prove that column
ĥ(l),0 (the first column in Ĥ(l)) is linearly independent of the
rest of the k − 1 − l columns of Ĥ(l) which we denote as
Ĥ(l),2:k−l. We note that Ĥ(l) is generated by taking the trans-
pose of multiplying M−1

l+1:k,l+1:k with Gl+1+l:k,k+1:k+N+l

which we denoted as G(l).
Hence,

Ĥ(l) =
(
M−1

(l+1:k,l+1:k) × G(l)

)T

. (63)

In (64) below we show examples of G(l) when we assume
B + l > k for all 0 ≤ l ≤ B − N .

G =

1 X · · · X 0 0 0 · · · 0 α · · · 0

0 1 X · · · X 0 0 · · · 0 0
. . . 0

0 0
. . .

. . .
. . .

. . . 0 · · · 0 0 · · · α

...
... 1

. . .
. . .

. . .
... X · · · X

...
...

. . . X · · · X 0
...

...
0 0 · · · · · · 0 1 X · · · X X · · · X

�
��������������

�
													


G(0)

G(1)
B − N

+1

T − B

k N − 1 B − N + 1

.

(64)

We note that

Ĥ(l),2:k−l =
(
M−1

T−B,T−BG(l),T−B,:

)T

(65)

where M−1
T−B,T−B is acquired by taking the lower right

(T −B×T −B) matrix of M−1, and G(l),T−B,: is acquired
by taking the last T −B rows of G(l). Since M−1 is an upper
triangular matrix we have

rank(M−1
T−B,T−B) = T − B. (66)

Further, since taking the last T − B rows of G(l) results
in a matrix which a sub-matrix of GT−B,B (by taking only
T −B columns out of the B columns of GT−B,B), recalling
Property 6, it follows that

rank(G(l),T−B,:) = T − B. (67)

Therefore, following Lemma 3, (66) and (67), we have that

rank(Ĥ(l),2:k−l)≤min
(
rank(M−1

T−B,T−B), rank(G(l),T−B,:)
)

= T − B. (68)
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Therefore, since rank(Ĥ(l)) = T − B + 1 and
rank(Ĥ(l),2:k−l) ≤ T − B, it follows that ĥ(l),0 is linearly
independent with the following k − l + 1 columns.

2) Condition R1
This condition requires that for 0 ≤ ≤ B−N , the l-th column,
h(l)

l of H(l) should be linearly independent of the any set of
(N − 1) columns taken from the set{

h(l)
j , l + 1 ≤ j ≤ l + T

}
.

To simplify notations, we note that for 0 ≤ l ≤ B − N ,
we denote by H̄(l) as taking the last T − l columns of H(l).
Hence, showing that the l-th column, h(l)

l of H(l) is linearly
independent of the any set of (N − 1) columns taken from

the set
{
h(l)

j , l + 1 ≤ j ≤ l + T
}

is equivalent to show that

h̄0 is linearly independent of any set of (N−1) columns taken
from the other T − l−1 columns of H̄(l). H̄(l) can be denoted
as

Denote A ⊂ {2, . . . , T} the set of N − 1 coordinates taken
from H̄(l)

:,2:T . Hence, we denote as H̄(l)
:,A as the sub matrix

formed from taking the columns matching these coordinates
(i.e. the matrix of N − 1 columns we need to show that h̄0 is
linearly independent of).

Proving condition R1 is thus equivalent to prove that column
H̄(l)

:,1 (the first columns in H̄(l)
:,{1,A}) is linearly independent of

the other N − 1 columns. This in turn is equivalent to show
that

rank(H̄(l)
:,A) ≤ rank(H̄(l)

:,{1,A}) − 1.

Hence, we carefully analyze next the rank of these matrices.
We note that H̄(l) is a N + l×T +1 matrix therefore H̄(l)

:,A
is a N + l × N − 1 matrix. Hence

rank(H̄(l)
:,A) ≤ N − 1. (70)

We note that the N − 1× T − l− 1 upper right sub matrix
of H̄(l), can be denoted as

H̄(l)
1:N−1,2:,T−l =

[
P̄ IN−1

]
, (71)

where P̄ is a N − 1 × k − 1 − l sub matrix of P′′. This is
the dash-dot matrix in (69), shown at the bottom of the next
page.

Denote the set of w1 vectors taken from indices
{2, . . . , k − l} as W1 ⊂ {2, . . . , k − l}, the set of w2 vectors
taken from indices {k − l + 1, . . . , T − l} as W2 ⊂ {k −
l + 1, . . . , T − l}. We note that W = W1 ∪W2 is the set of
w = w1 + w2 vectors taken from indices {2, . . . , T − l}. We
further denote the set W̃2 ⊂ {2, . . . , N − 1} where this set
indicates the location of the elements in W2 with respect to
column K − l + 1.

Taking columns in W from H̄(l)
1:N−1,2:,T−l−1 can be denoted

as

H̄(l)
1:N−1,W =

[
P̄W1 IN−1,W2

]
. (72)

We show next that

rank(H̄(l)
1:N−1,W) = w. (73)

Applying column operations, we can zero the w2 rows
corresponds to indices W̃2 in P̄W1 . Thus, we are left with
a matrix composed taking columns in indices W1 and rows
in {1 : N − 1} ∩ W̃2. Following Corollary 3, this matrix has
rank which equals min (N − 1 − w2, w1).

An example where w1 = 3 and w2 = 2 is given in (74),
shown at the bottom of the next page, (after applying some
row swaps). Therefore, applying column operations (and some
row swaps), we get that

H̄(l)
:,W =

[
Iw

H̃(l)
w+1:N+l,W

]
, (75)

where H̃(l)
w+1:N−1,W are the N + l − w rows resulting from

the column operations (over Fq).
We note that if w = N − 1 (i.e., none of the erasures

occurred in indices {T − l + 1, . . . , T + 1}) we have A = W ,
thus we have

H̄(l)
:,{1,A} =

[
0N−1×1 IN−1

h̃0,l+1×1 H̃(l)
w+1:N+l,W

]
(76)

where h̃0,l+1×1 is the l + 1 × 1 lower part of h̃0 which is
the outcome of the column operations that zeroed the upper
N − 1 part of this vector. Following Property 5 we have
that fl+1,l+1(α) 
= 0 and since all column operations were
performed over Fq it follows that f̃l+1,l+1(α) 
= 0. Thus, we
have that

rank(H̄(l)
:,{1,A}) = N. (77)

We note that if w < N−1 (i.e. some of the erasure occurred
at the last l + 1 indices), when applying column operations,
not all upper N − 1 elements of h̃0,l+1×1 are nulled. Since
these elements are taken from P′′, it follows each one of them
does not equal 0. Thus, again we get that

rank(H̄(l)
:,{1,A}) = N. (78)

Therefore, since rank(H̄(l)
:,{1,A}) = N and rank(H̄(l)

:,A) ≤
N − 1, it follows that (H̄(l)

:,1) is linearly independent with any
other N − 1 columns taken from H̄.

3) Condition B2
We note that for B − N + 1 ≤ l ≤ T − N + 1, the set

{hj , l ≤ j ≤ l + B − 1}
can be viewed as set of B columns taken from the parity-check
matrix associated with the (n, k) MDS code C′′ with generator
matrix G′′. Examples of groups of B columns to be analyzed
are depicted in (79), shown at the bottom of the next page,
for l = B −N + 1 and l = B −N + 2. Following Property 1,
we note that H:,{B−N+2,...,n} (marked in solid in (79)), can
be viewed as the parity matrix of (B + N − 1, N − 1) MDS
code. Following Corollary 4, any B columns from the parity
of this code matrix are independent, it follows that for any
B−N +1 ≤ l ≤ T −N +1, the set {hj , l ≤ j ≤ l + B − 1}
is independent.

4) Condition R2
Following the explanation for condition B2, and since B ≥ N ,
it follows that condition R2 also holds.
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V. CONCLUDING REMARKS

In this paper, we study streaming codes over an erasure
channel whose erasure pattern in every sliding window of
size W is either a burst erasure of maximum length B or
multiple arbitrary erasures of maximum total count N where
these parameters meet (5). While the capacity of this channel
was derived (separately) by Fong et al. [12] and Krishnan and

Kumar [13], no explicit code construction which achieves this
capacity with low field size (for any coding parameters) was
suggested.

In this paper, we presented an explicit code construction that
achieves the capacity of the channel mentioned above with
a field size that scales quadratically in the delay constraint.
The construction relies on properties of MDS codes from a

H̄(l) = H(l)
1:N+l,l:l+T

=

−Y · · · · · · · · · · · · · · · −Y 1 0 · · · · · · · · · 0
...

...
...

...
...

...
... 0

. . . · · · · · · · · · 0

−Y · · · · · · · · · · · · · · · −Y 0 . . . 1
... · · · 0

−Yα · · · · · · −Yα −Y · · · −Y
... · · · · · · 1

... 0
...

...
...

...
...

...
...

... · · ·
...

...
. . . 0

fl+1,l+1(α) −Yα · · · −Yα −Y · · · −Y · · · · · · · · · · · · · · · 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B − N + 1 − l T − B N − 1 l + 1

T − l

N − 1

N + l
. (69)

H̄(l)
1:N−1,W =

−Y −Y −Y 1 0
...

...
... 0 1

...
...

... 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
−Y · · · −Y 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

0 0 0 1 0
0 0 0 0 1

−Y −Y −Y 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
−Y · · · −Y 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

0 1 0
...

...

0 0 1
...

...

−Ỹ · · · −Ỹ 0 0
...

...
...

...
...

−Ỹ · · · −Ỹ 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (74)

H =
[
−P̃T

∣∣∣ IB×B

]

=

−Y · · · · · · · · · · · · · · · −Y 1 0 · · · · · · · · · · · · 0
...

...
...

...
...

...
... 0 1 0 · · · · · · · · · 0

−Y · · · · · · · · · · · · · · · −Y 0 0
. . . · · ·

...
... 0

f1,1(α) −Yα · · · −Yα · · · · · · −Y
...

... 1
. . .

... 0

f1,2(α) f2,2(α) −Yα

... · · · · · · −Y
...

... 0
. . .

... 0
...

...
. . . −Yα

...
... −Y

...
... 0

. . . 0
f1,B−N+1(α) f2,B−N+1(α) · · · fB−N+1,B−N+1(α) −Y · · · −Y 0 0 · · · · · · 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N − 1

(79)
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base field (whose size scales linearly with the delay constraint)
while replacing some of the elements in the generator matrix
with elements for an extension field, thus resulting in a final
field size that scales quadratically with the delay constraint.

An open question is whether there exists an explicit
construction for capacity-achieving streaming codes (for all
admissible parameters) with smaller field size (i.e., a field
size the scales linearly with the delay constraint). While
this seems possible to some specific values of (W, B, N),
finding a coding scheme for any (admissible) values is an
interesting avenue.

APPENDIX A
EXPLICIT DESCRIPTION OF G̃

Writing (43) explicitly is described in (80), shown at the
bottom of the next page. Recalling that M is an upper
triangular matrix it follows that M−1 is also upper triangular.
Since G:,1:T = G′

:,1:T it follows that the first T columns of
G̃ equal the first T columns of G′.

We denote with fi,j = M−1
i,: G:,j+T where 1 ≤ i ≤ B +

N − 1 and i ≤ j ≤ B − N + 1. We note that only these
elements in G include α ∈ Fq2 \ Fq . We further note that
since M−1

i,i = 1 (for any i ∈ {1, . . . , k}, this element is not
nulled in this multiplication.

We denote with Yα = M−1
i,: G:,j+T where

2 ≤ i ≤ B + N − 1 and 1 ≤ j ≤ i − 1, i.e., these
elements does not equal to the elements Y at this location in
G′ (due to replacing the upper right B −N + 1×B −N + 1
matrix in G′ with I · α).8 We note though, that since M−1

is upper triangular, these elements do not contain α.

APPENDIX B
PROOF OF LEMMA 3

The space spanned by the columns of AB is the space S
of all vectors s that can be written as linear combinations of
the columns of AB:

s = (AB) v (81)

where v is the M × 1 vector of coefficients of the linear
combination. We can also write

s = A (Bv) (82)

where Bv is an L × 1 vector (being a product of an L × M
matrix and an M × 1 vector). Thus, any vector s ∈ S can
be written as a linear combination of the columns of A, with
coefficients taken from the vector Bv. As a consequence, the
space S is no larger than the span of the columns of A, whose
dimension is rank(A). This implies that the dimension of S
is less than or equal to rank(A). Since the dimension of S is
the rank of AB, we have

rank(AB) ≤ rank(A) (83)

Now, the space spanned by the rows of AB is the space T
of all vectors t that can be written as linear combinations of
the rows of AB:

t = u (AB) (84)

8Again, we note that Y and Yα are not a constant element but rather
represent (potentially different) element taken from Fq .

where u is the 1 × K vector of coefficients of the linear
combination. We can also write

t = (uA)B (85)

where uA is a 1×L vector (being a product of a 1×K vector
and a K × L matrix). Thus, any vector t ∈ T can be written
as a linear combination of the rows of B, with coefficients
taken from the vector uA. As a consequence, the space T is
no larger than the span of the rows of B, whose dimension
is rank(B). This implies that the dimension of T is less than
or equal to rank(B). Since the dimension of T is the rank of
AB, we have

rank(AB) ≤ rank(B) (86)

(83) and (86) imply that

rank(AB) ≤ min (rank(A), rank(B)) (87)

APPENDIX C
PROOF OF PROPOSITION 6

Proof: Recall that GT−B,B the lower right (T −B ×B)
matrix of G marked in solid in (88).

G =

1 X · · · X 0 0 0 · · · 0 α · · · 0

0 1 X · · · X 0 0 · · · 0 0
. . . 0

0 0
. . .

. . .
. . .

. . . 0 · · · 0 0 · · · α
...

... 1
. . .

. . .
. . .

... X · · · X
...

...
. . . X · · · X 0

...
...

0 0 · · · · · · 0 1 X · · · X X · · · X

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

GT−B,B

T−B

.

(88)

First step in analyzing the rank of GT−B,B is to note that
GT−B,B = G′

T−B,B . Now, from the definition of G′ we
have that G′ = MG′′. Hence, GT−B,B can be viewed as
multiplying the (T −B×T −B) lower right part of M (which
we denote as MT−B,T−B) with the (T −B ×B) lower right
part of G′′ (which we denote as G′′

T−B,B).

GT−B,B =MT−B,T−B × G′′
T−B,B

=

1 Y ′ · · · Y ′ 0 · · · · · · 0
0 1 Y ′ · · · Y ′ 0 · · · 0
... · · · . . .

. . .
. . .

. . .
. . .

...
0 · · · 0 1 Y ′ · · · Y ′ 0
0 · · · 0 0 1 Y ′ · · · Y ′

0 · · · 0 0 0
. . .

. . . Y ′

0 · · · 0 0 0 0 1 Y ′

0 · · · 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

×
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1 0 · · · 0 0 · · · · · · 0 Y · · · Y
0 1 0 · · · 0 0 · · · 0 Y · · · Y
... · · · . . .

...
...

...
...

...
...

...
...

0 · · · 0 1 0 · · · 0 0 Y · · · Y
0 · · · 0 0 1 0 · · · 0 Y · · · Y

0 · · · 0 0 0
. . .

. . . 0 Y · · · Y
0 · · · 0 0 0 0 1 0 Y · · · Y
0 · · · 0 0 0 0 0 1 Y · · · Y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P′′
k×B

︸ ︷︷ ︸
G′′

(89)

Since G′′
T−B,B is a sub-matrix of P′′, following Corol-

lary 2, it has a full rank. Thus,

rank(G′′
T−B,B) = min(T − B, B). (90)

Matrix MT−B,T−B is a square upper triangular matrix and
thus we have

rank(MT−B,T−B) = T − B. (91)

Following Lemma 3 we have that

rank(GT−B,B) ≤min
(
rank(MT−B,T−B), rank(G′′

T−B,B)
)

min(T − B, B). (92)

Further, following Corollary 7 (and recalling that
MT−B,T−B is a square, full rank matrix) we have

rank(GT−B,B) ≥ rank(G′′
T−B,B)

= min(T − B, B). (93)

Combining (92) and (93), we conclude that
rank(GT−B,B) = min(T − B, B).

Further, we note that the sub-matrix of GT−B,B which is
formed by taking any w columns of GT−B,B has a rank

G̃ = M−1G

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M−1
1,:

M−1
2,:

...

...

...

M−1
k,:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
G:,1 · · ·G:,n

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M−1
1,:

M−1
2,:
...
...
...

M−1
k,:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 X · · · X 0 0 0 · · · 0 α · · · 0

0 1 X · · · X 0 0 · · · 0 0
. . . 0

0 0
. . .

. . .
. . .

. . . 0 · · · 0 0 · · · α

...
... 1

. . .
. . .

. . .
... X · · · X

...
...

. . . X · · · X 0
...

...

0 0 · · · · · · 0 1 X · · · X X · · · X

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B − N + 1

B − N + 1

=

1 0 · · · · · · · · · · · · 0 Y · · · Y f1,1(α) · · · · · · f1,B−N+1(α)

0 1 0 · · · · · · · · · 0 Y · · · Y Yα f2,2(α) · · · f2,B−N+1(α)

0 0
. . . · · ·

...
... 0 Y · · · Y

...
. . .

. . .
...

...
...

. . .
...

... 0 Y · · · Y Yα · · · Yα fB−N+1,B−N+1(α)

...
...

. . .
... 0 Y · · · Y Y · · · Y Y

0 0 · · · · · · 0 1 0 Y · · · Y Y · · · Y Y

0 0 · · · · · · · · · 0 1 Y · · · Y Y · · · Y Y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k N − 1 B + N − 1

. (80)
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of min(T − B, w) since taking w columns is equivalent to
multiply MT−B,T−B (which is a square full matrix) with w
columns from G′′

T−B,B .

APPENDIX D
PROOF OF PROPOSITION 7

Proof: Recall that M−1
B,T−B is the upper right (B×T−B)

matrix of M−1 of marked in solid in (94).

M−1 =

1 Y ′′ · · · Y ′′ Y ′′ · · · · · · Y ′′

0 1 Y ′′ · · · Y ′′ Y ′′ · · · Y ′′

... · · · . . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 Y ′′ · · · Y ′′ Y ′′

0 · · · 0 0 1 Y ′′ · · · Y ′′

... · · ·
...

...
...

. . .
. . . Y ′′

0 · · · 0 0 0 0 1 Y ′′

0 · · · 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M−1
B,T−B

B − N + 1

N − 1

(94)

Since MM−1 = I we have

1 Y ′ · · · Y ′ 0 · · · · · · 0

0 1 Y ′ · · · Y ′ 0 · · · 0
... · · · . . .

. . .
. . .

. . .
. . .

...

0 · · · 0 1 Y ′ · · · Y ′ 0

0 · · · 0 0 1 Y ′ · · · Y ′

0 · · · 0 0 0
. . .

. . . Y ′

0 · · · 0 0 0 0 1 Y ′

0 · · · 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M1:B−N+1,1:B

︸ ︷︷ ︸
M

×

1 Y ′′ · · · Y ′′ Y ′′ · · · · · · Y ′′

0 1 Y ′′ · · · Y ′′ Y ′′ · · · Y ′′

... · · · . . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 Y ′′ · · · Y ′′ Y ′′

0 · · · 0 0 1 Y ′′ · · · Y ′′

0 · · · 0 0 0
. . .

. . . Y ′′

0 · · · 0 0 0 0 1 Y ′′

0 · · · 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M−1
B,T−B

︸ ︷︷ ︸
M−1

=

1 0 · · · 0 0 · · · · · · 0
0 1 0 · · · 0 0 · · · 0

... · · · . . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 0 · · · 0 0
0 · · · 0 0 1 0 · · · 0

0 · · · 0 0 0
. . .

. . . 0
0 · · · 0 0 0 0 1 0
0 · · · 0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(95)

which means

M1:B−N+1,1:B × M−1
B,T−B = 0B−N+1×B (96)

which means that the first B − N + 1 rows of M−1
B,T−B can

be expressed as linear combination of the last N −1 rows.
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